Find your live sex chat vit nam dating christian men at ny

For each blogger, metadata is present, including the blogger s self-provided gender, age, industry and astrological sign. The creators themselves used it for various classification tasks, including gender recognition (Koppel et al. The men, on the other hand, seem to be more interested in computers, leading to important content words like software and game, and correspondingly more determiners and prepositions.One gets the impression that gender recognition is more sociological than linguistic, showing what women and men were blogging about back in A later study (Goswami et al.172 For Tweets in Dutch, we first look at the official user interface for the Twi NL data set, Among other things, it shows gender and age statistics for the users producing the tweets found for user specified searches.These statistics are derived from the users profile information by way of some heuristics.2004), with and without preprocessing the input vectors with Principal Component Analysis (PCA; (Pearson 1901); (Hotelling 1933)).

In this paper, we start modestly, by attempting to derive just the gender of the authors 1 automatically, purely on the basis of the content of their tweets, using author profiling techniques.The age component of the system is described in (Nguyen et al. The authors apply logistic and linear regression on counts of token unigrams occurring at least 10 times in their corpus.The paper does not describe the gender component, but the first author has informed us that the accuracy of the gender recognition on the basis of 200 tweets is about 87% (Nguyen, personal communication). (2014) did a crowdsourcing experiment, in which they asked human participants to guess the gender and age on the basis of 20 to 40 tweets. on this, we will still take the biological gender as the gold standard in this paper, as our eventual goal is creating metadata for the Twi NL collection. Experimental Data and Evaluation In this section, we first describe the corpus that we used in our experiments (Section 3.1).When using all user tweets, they reached an accuracy of 88.0%.An interesting observation is that there is a clear class of misclassified users who have a majority of opposite gender users in their social network. When adding more information sources, such as profile fields, they reach an accuracy of 92.0%.

Leave a Reply